Second Level (2): key facts

I know decimal number bonds to 1 and 10.

Some examples:

$$
\begin{array}{ll}
0.6+0.4=1 & 3.7+6.3=10 \\
0.4+0.6=1 & 6.3+3.7=10 \\
1-0.4=0.6 & 10-6.3=3.7 \\
1-0.6=0.4 & 10-3.7=6.3 \\
& \\
0.75+0.25=1 & 4.8+5.2=10 \\
0.25+0.75=1 & 5.2+4.8=10 \\
1-0.25=0.75 & 10-5.2=4.8 \\
1-0.75=0.25 & 10-4.8=5.2
\end{array}
$$

Key Vocabulary

What do I add to 0.8 to make 1 ?
What is 1 take away 0.06 ?
What is 1.3 less than 10 ?
How many more than 9.8 is 10 ?
What is the difference
between 0.92 and 10 ?

This list includes some examples of facts that children should know. They should be able to answer questions including missing number questions e.g. $0.49+\bigcirc=10$ or $7.2+\bigcirc=10$.

Top Tips

The secret to success is practising little and often. Use time wisely. Can you practise these facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher.

Buy one get three free - If your child knows one fact (e.g. $8+5=13$), can they tell you the other three facts in the same fact family?

Use number bonds to 10 - How can number bonds to 10 help you work out number bonds to 100?

Play games -There are number bond games to play at Top Marks such as Hit the Button

Second Level (2): key facts

I know the multiplication and division facts for all times tables up to 12×12.

Key Vocabulary
What is 12 multiplied by 6 ?
What is the product of 3
and 9 ?
What is 7 times 8 ?
What is 84 divided by 7 ?

Children should be able to answer these questions in any order, including missing number questions e.g. $7 \times \bigcirc=28$ or $\bigcirc \div 6=7$.

Top Tips

The secret to success is practising little and often. Use time wisely. Can you practise these facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact family of the day. If you would like more ideas, please speak to your child's teacher.

Speed Challenge - Take two packs of playing cards and remove the kings. Turn over two cards and ask your child to multiply the numbers together (Ace $=1$, Jack = 11, Queen = 12). How many questions can they answer correctly in 2 minutes? Practise regularly and see if they can beat their high score.

Online games - There are many games online which can help children practise their multiplication and division facts. We encourage children to use Hit the Button.

Second Level (2): key facts

I can recall metric conversions.

> 1 kilogram $=1000$ grams
> 1 kilometre $=1000$ metres
> 1 metre $=100$ centimetres
> 1 metre $=1000$ millimetres
> 1 centimetre $=10$ millimetres
> 1 litre $=1000$ millilitres

Children should also be able to apply these facts to answer questions.
e.g. How many metres in $1 \frac{1}{2} \mathrm{~km}$?

Top Tips

The secret to success is practising little and often. Use time wisely. Can you practise these facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher.

Look at the prefixes - Can your child work out the meanings of kilo-, centi- and milli-?
What other words begin with these prefixes?
Be practical - Do some baking and convert the measurements in the recipe.
How far? - Calculate some distances using unusual measurements. How tall is your child in mm? How far away is school in metres and cms?

Second Level (2): key facts

I can identify prime numbers up to 20.

A prime number is a number with no factors other than itself and one.

The following numbers are prime numbers:
$2,3,5,7,11,13,17,19$

A composite number is divisible by a number other than 1 or itself.

The following numbers are composite numbers:
$4,6,8,9,10,12,14,15,16,18,20$

Children should be able to explain how they know that a number is composite. E.g. 15 is composite because it is a multiple of 3 and 5 .

Top Tips

The secret to success is practising little and often. Use time wisely. Can you practise these facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher.

It's really important that your child uses mathematical vocabulary accurately. Choose a number between 2 and 20. How many correct statements can your child make about this number using the vocabulary above?

Make a set of cards for the numbers from 2 to 20 . How quickly can your child sort these into prime and composite numbers? How many even prime numbers can they find? How many odd composite numbers?

Second Level (2): key facts

I can recall square numbers up to 12^{2} and their square roots.

$$
\begin{array}{rlrl}
1^{2} & =1 \times 1=1 & 1 & =1 \\
2^{2} & =2 \times 2=4 & \sqrt{4} & =2 \\
3^{2} & =3 \times 3=9 & \sqrt{9} & =3 \\
4^{2} & =4 \times 4=16 & \sqrt{16} & =4 \\
5^{2} & =5 \times 5=25 & \sqrt{25} & =5 \\
6^{2} & =6 \times 6=36 & \sqrt{36} & =6 \\
7^{2} & =7 \times 7=49 & \sqrt{49} & =7 \\
8^{2} & =8 \times 8=64 & \sqrt{64} & =8 \\
9^{2} & =9 \times 9=81 & \sqrt{81} & =9 \\
10^{2} & =10 \times 10=100 & \sqrt{100} & =10 \\
11^{2} & =11 \times 11=121 & \sqrt{121} & =11 \\
12^{2} & =12 \times 12=144 & \sqrt{144} & =12
\end{array}
$$

Key Vocabulary

What is 8 squared?
What is 7 multiplied by itself?
What is the square root of 144 ?
Is 81 a square number?

Children should also be able to recognise whether a number below 150 is a square number or not.

Top Tips

The secret to success is practising little and often. Use time wisely. Can you practise these facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher.

Cycling Squares - At http:// nrich.maths.org/1151 there is a challenge involving square numbers. Can you complete the challenge and then create your own examples?

Second Level (2): key facts

I can find factor pairs of a number.

Children should now know all multiplication and division facts up to $12 \times$ 12. When given a number in one of these times tables, they should be able to state a factor pair which multiply to make this number. Below are some examples:

$24=4 \times 6$	$42=6 \times 7$
$24=8 \times 3$	$25=5 \times 5$
$56=7 \times 8$	$84=7 \times 12$
$54=9 \times 6$	$15=5 \times 3$

Key Vocabulary

Can you find a factor of 28 ?
Find two numbers whose product is 20 .

I know that 6 is a factor of 72 because 6 multiplied by 12 equals 72 .

Top Tips

The secret to success is practising little and often. Use time wisely. Can you practise these facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. If you would like more ideas, please speak to your child's teacher.

Play games - There are many games online which can help children practise their multiplication and division facts. We encourage children to use Hit the Button.

Think of the question - One player thinks of a times table question (e.g. 4×12) and states the answer. The other player has to guess the original question.

